163 research outputs found

    Measurement of the analyzing power Ay0 for the reaction H(p⃗,d)π+ between 1000 and 1300 MeV

    Get PDF
    The analyzing power Ay0 of the reaction H(p⃗,d)π+ has been measured at a fixed value of the Mandelstam variable ud=-0.17GeV2 for nine proton energies between 1000 and 1300 MeV. The experiment was performed at SATURNE with the SPES1 spectrometer. The data exhibit structure around √s≃2.37GeV. The origin of this structure could be related to a resonancelike behavior of the 1S0P or 1G4F partial amplitudes

    Measurement of the 3He(e,e'p)pn reaction at high missing energies and momenta

    Full text link
    Results of the Jefferson Lab Hall A quasielastic 3He(e,e'p)pn measurements are presented. These measurements were performed at fixed transferred momentum and energy, q = 1502 MeV/c and omega = 840 MeV, respectively, for missing momenta p_m up to 1 GeV/c and missing energies in the continuum region, up to pion threshold; this kinematic coverage is much more extensive than that of any previous experiment. The cross section data are presented along with the effective momentum density distribution and compared to theoretical models.Comment: 5 pages, 3 figures, updated to reflect published paper: minor text changes from previous version along with updated and added reference

    The Quasielastic 3He(e,e'p)d Reaction at Q^2 = 1.5 GeV^2 for Recoil Momenta up to 1 GeV/c

    Full text link
    We have studied the quasielastic 3He(e,e'p)d reaction in perpendicular coplanar kinematics, with the energy and momentum transferred by the electron fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,e'p)d cross section was measured for missing momenta up to 1000 MeV/c, while the A_TL asymmetry was extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150 MeV/c, the measured cross section is described well by calculations that use a variational ground-state wave function of the 3He nucleus derived from a potential that includes three-body forces. For missing momenta from 150 to 750 MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c, the experimental cross section is more than an order of magnitude larger than predicted by available theories. The A_TL asymmetry displays characteristic features of broken factorization, and is described reasonably well by available models.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, v3: changed conten

    Phenomenology of the Deuteron Electromagnetic Form Factors

    Full text link
    A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm^-1. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.Comment: 18 pages (LaTeX), 2 figures Feb. 25: minor changes of content and in Table

    A precise measurement of the deuteron elastic structure function A(Q^2)

    Full text link
    The A(Q^2) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q^2 between 0.66 and 1.80 (GeV/c)^2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5 degrees. These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents.Comment: 3 LaTeX pages plus 2 PS figure

    Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    Get PDF
    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q. They are in good agreement with relativistic calculations and disagree with pQCD predictions.Comment: 5 pages, 4 figures, for associated informations, see http://isnwww.in2p3.fr/hadrons/t20/t20_ang.html clarification about several topics, one figure has been had, extraction of form factors use AQ interpolation in our Q2 range onl

    Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comment

    Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2

    Get PDF
    Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior.Comment: version 2: modified according to PRC Editor's and Referee's recommendations. Archival paper for the E93-050 experiment at JLab Hall A. 28 pages, 23 figures, 5 cross-section tables. To be submitted to Phys.Rev.

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,eâ€Čp)Îł(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,eâ€Čp)Îł(e,e'p)\gamma to H(e,eâ€Čp)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Backward electroproduction of pi0 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0 GeV**2

    Get PDF
    Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.Comment: 17 pages, 11 figures, information can be found at http://hallaweb.jlab.org/experiment/E93-050/vcs.html updated content about SAID analysis updated MAID results following new reference nucl-th/0310041 updated figure
    • 

    corecore